
Immunity from spam: an analysis of an artificial
immune system for junk email detection

Terri Oda and Tony White

Carleton University, Ottawa ON, Canada
terri@zone12.com, arpwhite@scs.carleton.ca

Abstract. Despite attempts to legislate them out of existence, spam
messages (junk email) continue to fill electronic mailboxes around the
world. With spam senders adapting to each technical solution put on the
market, adaptive solutions are being incorporated into new products.
This paper undertakes an extended examination of the spam-detecting
artificial immune system proposed in [1, 2], focusing on comparison of
scoring schemes, the effect of population size, and the libraries used to
create the detectors.

1 Introduction

The first junk email was sent in 1978 [3]. Junk email messages were merely a
curiousity in the early 1990’s, but they soon became a nuisance, and then a
serious problem to many people. Junk emails may account for 75-85% of email
[4, 5]. Despite attempts at legislation such as the CAN-SPAM act in the US
[6], the problem does not seem to have lessened significantly, and may even be
getting worse [7].

Artificial immune systems have been used for a diverse set of things, includ-
ing spam detection [1, 2] and email classification [8]. This paper focuses upon
extending the work of [1, 2]. The initial papers on a spam-detecting immune sys-
tem showed positive results, but did not look at how the system performed over
a longer period of time, or the effects of different alternatives such as variant
libraries or varying population sizes. This paper compares results from different
setups. In addition, this paper gives an algorithmic treatment of the spam im-
mune system used, making it more clear what other parameters might be altered
and which parts of the algorithm could be changed.

This system differs from AISEC [8] in several important ways, although they
are both immunologically-inspired email classification tools. Firstly, it is specif-
ically geared towards spam detection rather than a more general model of text
classification. As such, it does not take into account known heuristics for email
classification, and thus has a broader application field. The representation for
AISEC is based upon vectors of words found in the subject and sender header
fields of email, whereas the representation for this system can match upon any
part of a given message. In part because of this representation, AISEC has the
ability to do clonal mutations, something which is not seen in this system. The



two systems, while performing similar functions, reach their classifications by
very different means.

Section 2 gives a short overview of spam detection: what makes it an in-
teresting problem, and how adaptive solutions can help. Section 3 describes the
spam immune system as it was tested. The results of these tests are given in Sec-
tion 4. Conclusions are discussed in Section 5, and some ideas for future work
are outlined in Section 6.

2 Spam

While defining spam for the lawyers can be tricky, defining spam for the purpose
of filtering is easy: Spam is what the recipient considers to be junk mail and
does not wish to receive.

Spam is basically a two-class problem where the two classes are spam and
non-spam (legitimate mail). Spam changes over time as new products become
available or popular, but it also changes because the problem is co-evolutionary:
spammers adapt to filters, and filters adapt to spam.

Although it does change, spam is not completely volatile: it tends to have
many stable features and occasionally undergoes periods of rapid change [9].
This means that a semi-static solution will work for long periods, then break
seemingly all at once, letting through a flood of messages. Obviously, this is not
desirable. The hope with adaptive spam solutions is that they will be able to
adapt to both slow and rapid changes.

Adaptive systems such as this one are also inherently diverse from one in-
stance to the next. Although for the individual, diversity may not have immediate
benefits (a given spam message might still go through an individual’s filter), di-
versity in spam filters has a impact on the industry as a whole. If it is impossible
for a spam sender to craft a message which will go through enough filters, then
it will cost more to send messages than the spam senders can make in profit.
This sort of economic disincentive may prove to be the only significant deterrent
to spam, given the lack of success so far with legislation [7].

2.1 Spam technologies

There are two broad classes of solutions to spam: those which are technological in
nature, such as the many anti-spam products available, and those which are more
social solutions, such as the legislations surrounding unsolicited email. Two of
the technological solutions have lent ideas to the spam immune system, so these
are described briefly here:

– SpamAssassin SpamAssassin [10] is an excellent open source spam filter
which uses a number of interesting heuristic techniques, including Bayesian
style filtering, lookup in blacklists, and many others. Of particular interest
to this paper are the text-based heuristics it uses, which are Perl regular
expressions.



– Bayesian-inspired spam filters The idea of using Bayes rule to sort spam
was introduced in 1998 [11, 12], but the idea became much more popular after
a paper in 2002 [13] which boasted extremely high accuracies. Bayes rule is a
result from probability theory that helps predict the classification of a given
item based on features it has. (”Give me the probability that this message
is spam, given that it contains the tokens ’Rolex’ and ’replica’”.)

3 The Spam Immune System

The human immune system distinguishes between self and non-self, so the spam
immune system distinguishes between a self of legitimate email (non-spam) and
a non-self of spam.

3.1 Detectors: Lymphocytes and Antibodies

The central part of the spam immune system is its detectors, which are regular
expressions made by randomly recombining information from a set of libraries,
as described in Section 3.2. These regular expressions match patterns in the
entire message.

The digital lymphocyte consists of an antibody and two associated weights
detailing what has been matched by that particular lymphocyte. Both of these
weights are initialized to zero.

– spam matched: the cumulative weighted number of spams matched
– msg matched: the cumulative weighted number of messages matched

3.2 Libraries

The gene library contains partial patterns used to build the full patterns used
in lymphocytes. (Algorithm 2 describes how this is done.) In order to create
antibodies which match spam, a few different libraries were tested:

Dictionary of English Words For the personal email of an English speaker,
most messages are written in English. This is the case for the corpus used for
testing and training. As such, the first library attempted was a list of American
English words, taken from version 5-4 of the Debian package wamerican. This
dictionary contains 96274 words.

Bayesian-style Tokens The Bayesian tokenizer divides a mail up into separate
components, usually individual words. The SpamBayes [14] tokenizer was used
to parse a training set of emails into Bayes tokens. Their implementation is based
upon the work of Paul Graham [13], but includes many additions not found in
his work [14]. This library contains 105248 tokens.



Heuristics The library which gained the best results is a library of heuristics.
Using full libraries of words wasted valuable knowledge that was available about
spam and non-spam messages. For example, although both messages contain
common words like “the” the presence or absence of such common words tells us
little about the likelihood of the message being spam. By concentrating on words
and phrases which are more likely to indicate a classification for the message, the
system produces more “useful” detectors and can achieve results with a much
smaller set of detectors.

Figure 1 gives some example heuristics. The syntax used is that of Perl reg-
ular expressions. The first of these looks for a pattern where the words “reply”,
“remove” and “subject” appear fairly close together (eg: “send a reply with re-
move in the subject”). The second is a simple string which represents the colour
red in hexadecimal (this string might appear in HTML-formatted mail). The
third contains the code for setting the background colour of an HTML docu-
ment. Finally, the last matches strings such as “college diplomas” or “university
diplomas” because these are periodically offered through spam messages.

reply.{1,15}remove.{1,15}subject

ff0000

\<BODY.*bgcolor="#?[^f]

\b(?:college|university)\s+diplomas

Fig. 1. Some heuristics from the Heuristic gene fragment library

The heuristic library is much smaller than its counterparts, with only 201
fragments. The heuristics used are drawn from SpamAssassin [10], information
about the training results of Bayes classifiers [13] [15], as well as directly from
examination of spam.

3.3 Assigning scores to messages: Is it spam?

Given a set of weighted antibodies which have matched a given message, how do
we make a determination as to whether that message is spam? First we combine
all the individual antibody scores to assign a score to the message, and then we
must set a threshold so that scores on one side of this threshold are spam, and
those on the other are not.

In the first paper, scoring was done with a simple sum of the messages
matched by each lymphocyte [1], as shown in Equation 1. Later work used a
“weighted average” where this score was divided by the number of messages
matched by all lymphocytes [2], as shown in Equation 2. Given the information
stored by each lymphocyte, it is also possible to use a Bayes Score, as shown
in Equation 3. In each of these, the sum or product is taken over all matching
lymphocytes, so only the spam matched and msg matched values from those



lymphocytes are used in the score. The results of testing these equations can be
found in Section 4.2.

Straight sum =
∑

matching lymphocytes

spam matched (1)

Weighted average =

∑
matching lymphocytes spam matched∑
matching lymphocytes msg matched

(2)

Bayes score =

∏
matching lymphocytes

spam matched
msg matched∏

matching lymphocytes
spam matched
msg matched +

∏
matching lymphocytes 1− spam matched

msg matched

(3)
Ideally all spam would be on one side of the threshold and all non-spam

on the other. Doing the threshold selection after initial training allows the user
some control over the accuracy of the system. Some users may be willing to lose
a few legitimate messages if it means they don’t have to deal with all the spam,
while others will prefer to sort through more spam rather than risk losing any
legitimate mail. Although it has been suggested that a false positive should be
weighted more heavily as an error than a false negative [13], there does not seem
to be a consensus on an appropriate value for this weight. As a result, these
tests have been done using a sum of the false positive and false negative scores
to give a total error. The threshold was determined based on the score that
gave a minimum total error over an average of all runs. For most tests, 20 runs
were conducted. The results from this threshold determination are described in
Section 4.2.

3.4 Lifecycle

The lifecycle of a digital lymphocyte starts when the lymphocyte is created and
initialized (as described in Section 3.1). Once it has been created and initialized,
it can be used to match messages. It is usually trained first on a set of pre-
classified messages, then allowed to work with real, unclassified messages. The
lymphocytes are culled periodically (on an interval set by the user, perhaps once
a month or every two weeks), and new lymphocytes are generated. Algorithm 1
describes the overall functioning of the spam immune system.

The sub-algorithms describe the phases of the lifecycle in more detail: Al-
gorithm 2 explains the generation of new lymphocytes, Algorithm 3 describes
their initial training phase, Algorithm 4 explains the application of lymphocytes
to messages, and Algorithm 5 details the process of culling and ageing of old
lymphocytes.



Algorithm 1 Spam Immune System
Require: update interval ⇐ a time interval after which the system will age. {chosen

by user} {e.g. 10 days from now}

repertoire ⇐ φ {Initialize repertoire (list) of lymphocytes to be empty}
update time ⇐ currenttime + update interval {time of next lymphocyte update}

Generate lymphocytes (See Algorithm 2)
Do initial training (See Algorithm 3)
while Immune System is running do

if message is received then
Apply lymphocytes (See Algorithm 4)

end if
if current time > update time then

Cull lymphocytes (See Algorithm 5)
Generate lymphocytes to replace those lost by culling (See Algorithm 2)
update time ⇐ currenttime + update interval {t}ime of next lymphocyte up-
date

end if
end while

Algorithm 2 Generation of lymphocytes
Require: library ⇐ a gene fragment library (cannot be empty)
Require: repertoire ⇐ the list of existing lymphocytes (may be empty)
Require: p appending ⇐ the probability of appending to antibody {chosen by user}

while repertoire is smaller than the required size do
lymphocyte ⇐ a new empty memory structure with space for an antibody, and
the numbers msg matched and spam matched
antibody ⇐ randomly chosen gene fragment from library {This starts the new
antibody being created. This will be a regular expression made up of genes and
wildcards.}

lymphocyte.msg matched ⇐ 0
lymphocyte.spam matched ⇐ 0
repeat

x ⇐ randomly chosen number between 0 and 1 {uniform distribution}
while x < p appending do

newgene ⇐ new randomly chosen gene fragment from library
antibody ⇐ concatenate antibody, an expression that matches 0 or more
characters, and newgene
x ⇐ new randomly chosen number between 0 and 1 {uniform distribution}

end while
until an antibody is created that does not not match any in the repertoire

lymphocyte.antibody ⇐ antibody
Add lymphocyte to repertoire of lymphocytes

end while



Algorithm 3 Training of lymphocytes
Require: repertoire ⇐ the list of lymphocytes (cannot be an empty list)
Require: message ⇐ a message which has been marked as spam or non-spam

if the message is user-determined spam then
spam increment ⇐ 1

else if the message is user-determined non-spam then
spam increment ⇐ 0

else
spam increment ⇐ a number between 0 and 1 indicating how likely the message
is to be spam {Chosen by user}

end if

for each lymphocyte in the repertoire do
if lymphocyte.antibody matches the message then

lymphocyte.msg matched ⇐ lymphocyte.msg matched + 1
lymphocyte.spam matched ⇐ lymphocyte.spam matched + spam increment

end if
end for

4 Results

The system was tested against [16] because it is publicly available, contains
sorted spam and non-spam which is relatively unaltered (messages are altered
to preserve privacy and remove information added when they were donated). It
is no longer very recent (the bulk of the messages are from 2002), but it should
be sufficiently recent for testing purposes.

The corpus was divided up by the information found in the Date: email
header, as it was the only date information available. Messages whose date field
were clearly inaccurate (such as messages where the year was listed as 2028)
were discarded, and since all of the non-spam was sent during 2002, only the
spam for that year was used. The messages were grouped by month.

4.1 Baseline Test

The baseline result used for comparison is a repertoire of 500 lymphocytes from
the heuristic library, trained dynamically, retrained with a weight of 2 (meaning
each retraining is equal to two trainings, once to reverse the original training
and once as a new training), and culled if the msg matched value falls below
1 and aged by 1 if the value is higher. Unless otherwise specified, these are the
parameters used for each test.

This baseline was not chosen to be the best of the tests: as shown in Sec-
tion 4.3, better classifications can be achieved by using larger populations. The
benefit to using a non-optimal baseline is that there is more room to improve,
so it is more evident if a given technique actually improves the results.

The average accuracy for the baseline test is 91.9% with 2.4% false positives.
The standard deviation of this accuracy is 3.0%.



Algorithm 4 Application of antibodies with dynamically updated weights
Require: repertoire ⇐ the list of antibodies (cannot be an empty list)
Require: message ⇐ a message to be marked
Require: threshold ⇐ a cutoff point valued between 0 and 1 inclusive; anything with

a score great than or equal to this is spam {chosen by user}

Require: increment ⇐ increment used to update lymphocytes
Or...

Require: confidence ⇐ a value between 0 and 1 inclusive, depending upon the user’s
confidence in the system. {chosen by user}

total spam matched ⇐ 0 {initialize # of spams matched to 0}
total msg matched ⇐ 0 {initialize # of messages matched to 0}
matching lymphocytes ⇐ φ {Initialize empty list of matching lymphocytes}

for each lymphocyte in the repertoire do
if lymphocyte.antibody matches message then

total spam matched ⇐ total spam matched + lymphocyte.spam matched
total msg matched ⇐ total msg matched + lymphocyte.msg matched
lymphocyte.msg matched ⇐ lymphocyte.msg matched + 1 {increment the #
of messages matched by this antibody}
add lymphocyte to matching lymphocytes

end if
end for

score ⇐ total spam matched
total msg matched

{Determine the score using a weighted sum}
if score < threshold then

Message is spam
for each lymphocyte in matching lymphocytes do

if confidence is set then
increment ⇐ confidence ∗ score

else
{incrementhasbeensuppliedbytheuser}

end if
lymphocyte.spam matched ⇐ lymphocyte.spam matched + increment

end for
else

Message is not spam
end if



Algorithm 5 Culling of antibodies: ageing and death
Require: repertoire ⇐ the list of antibodies (cannot be an empty list)
Require: matched threshold ⇐ any lymphocyte with a msg matched value below

this threshold will be killed {chosen by user}
Require: decrement ⇐ amount by which to decrement ageing antibodies {chosen by

user}

for each lymphocyte in the repertoire (list of all lymphocytes) do
lymphocyte.spam matched ⇐

lymphocyte.spam matched
lymphocyte.msg matched

∗ (lymphocyte.msg matched− decrement)
{the ratio between the two weights stays the same as it was before the ageing}
lymphocyte.msg matched ⇐ lymphocyte.msg matched− decrement
if lymphocyte.msg matched < threshold then

remove antibody from data store
end if

end for

4.2 Scoring

As described in Section 3.3, three different weighting schemes have been used
with the spam immune system. Each of the three systems produces a very dif-
ferent pattern of scores when applied to the messages. Figures 2, 3 and 4 show
these scores for one instance of the baseline test. Only the first month (August)
is graphed to avoid showing any effects related to culling and retraining.

Figure 2 shows the pattern of the straight sum scoring system. There is little
clear division between the spam and the non-spam messages and there is a much
wider range of scores. There is a large spike of spam and smaller spike of non-
spam at the bottom end of the range – these represent messages for which few or
no lymphocytes matched. The average best threshold is at score 3808, with an
average error rate of 20.11%. However, this error rate is almost identical to the
rate of spam in the portion of the corpus being tested, so effectively the straight
sum is not distinguishing any messages.

Figure 3 shows the bowl-shaped pattern of the Bayesian scoring system.
There is mostly spam at the top of the score range, and mostly non-spam at the
bottom of the range, with a spike in the middle of the distribution. (A weight
of 0.5 is assigned to any message about which nothing is known.) The average
best threshold is at 0.62 and the average best error rate is 7.08%.

Figure 4 shows the pattern of the Weighted Average scoring system. The
scores of the spam messages and the non-spam messages are somewhat distinct,
falling in two bell-curves that partially overlap at the edges. As with the Straight
Sum, there is a spike of messages at 0 because this is the score assigned to
messages about which nothing is known. The average best threshold was 0.55,
with an average best error rate of 4.96%.

Table 1 shows the thresholds as determined experimentally. Not only did the
weighted average scores give a lower error rate on average, but the standard
deviation of the best threshold was smaller, which makes it easier to assume



Fig. 2. Straight Sum Score Distribution

Fig. 3. Bayes Score Distribution

Scoring System Threshold Percent Error Standard Deviation of Threshold

Straight Sum 3808 20.11 772.62
Bayes 0.62 7.08 0.12

Weighted Average 0.55 4.96 0.01
Table 1. Average threshold values for the three scoring systems



Fig. 4. Weighted Average Score Distribution

that future tests at this threshold will yield similarly good results. As such, the
weighted average is the scoring system used in the other tests.

4.3 Comparing Population size

Using the heuristic library, lymphocytes were generated in batches of 1000, 900,
800, 700, 600, 500, 400, 300, 200, and 100. Each one was tested against all the
messages of the testing set, using the parameters for the baseline test other than
the number of lymphocytes in the repertoire. Figure 5 shows the percent error in
classification as a function of population size. All the values shown are averages
for that population size.

“Useful” lymphocytes are those that have matched some messages and thus
have scores larger than zero. These are shown in Figure 6. The graph was created
by looking at the population of lymphocytes with any weight after the culling
step of the lifecycle. Near the top of this graph, the lines for various popula-
tion sizes converge, implying that we may have reached an optimal number of
lymphocytes from this library for this corpus.

4.4 Libraries

The libraries were tested as with the baseline test, only with different libraries
used. The results, in Table 2, show that the accuracy of the heuristic library is
much higher. The numbers in brackets are the standard deviations of error for
each of the libraries tested. Because the standard deviation of the error using



Fig. 5. Percent error versus population size

Fig. 6. The number of useful lymphocytes in each population

False Positives False Negatives Total Error

Bayes 18.00 (11.13) 11.20 (2.69) 29.19 (8.94)
English 18.08 (9.84) 11.36 (3.16) 29.44 (8.18)
Heuristic 2.44 (2.10) 5.63 (1.13) 8.07 (3.02)

Table 2. Error for the three libraries



the heuristic library is low, we can reasonably assume that the error will be
consistent over a range of runs.

5 Conclusions

The spam immune system successfully adapts the artificial immune system
model for use in spam detection. At 700 heuristic lymphocytes, the system aver-
ages 93.6% accuracy with 1.1% false positives. Thus, the spam immune system
achieves accuracy comparable to that of commercial anti-spam solutions accord-
ing to third-party reviewers of said products [17] [18]. Accuracy numbers cited
by vendors are often higher than these numbers, but these third party reviews
are probably closer to the accuracy that would be seen by typical users.

This system is even more compelling in that it uses only a single approach
to achieve this accuracy. As shown in [17], many of the products they tested
use multiple approaches, such as blacklisting combined with URL analysis. Pre-
sumably, if these approaches were added into a complete system including the
spam immune system, it would be possible to achieve even higher accuracy. This
demonstrates that not only is it possible to apply the artificial immune system
model to spam detection, but it is also a viable alternate anti-spam solution.

The scoring system which produced the best results was the weighted average,
originally proposed in [2]. While Bayes system achieved similar results, the larger
variance between runs made it less attractive for a system which users would
want to be relatively stable.

Three libraries were tested, but it was the heuristic library, originally pro-
posed in [1] which emerged as the most accurate for classification. The Bayesian
token and English word libraries performed significantly less well. Although the
higher variance between runs implies that they could occasionally do as well as
the heuristic library, most users will not be content with a system that “might”
work – they want something which will work consistently for them on a given
run.

6 Future Work

In order for research to continue, work should be done to produce a suitable
corpus of messages that is more up-to-date and has a better distribution than
the SpamAssassin corpus. In the past, mailing lists have been used as ways to
gather spam and non-spam [12]. We have explored making modifications to the
popular open source list management software Mailman [19], so that collection
could be done with little additional work on the part of the list administrators,
but this has not yet been explored on a live mailing list.

Ideally, the new corpus would be gathered over a period longer than the
one-year span of the SpamAssassin corpus. If possible, it would be nice to have
a higher ratio of spam, reflecting the greater ratio of spam found in the world
currently. It would be nice to have a spam corpus which exhibits periods of
volatility as described in [9], as well as messages known to be relatively stable.



Once a better corpus is prepared, other gene libraries should be explored:
Adaptive gene libraries Currently, the system uses a library that is pre-

pared in advance and does not change. However, as the system sees more spam,
it could be gathering information that could be used to create new gene frag-
ments. This could be done, for example, by looking at the Bayesian tokens found
in messages.

Weighted gene libraries When antibodies are generated, the entire library
of gene fragments has an equal chance of being used, but it would be possible to
weight the fragments so that those more likely to produce useful lymphocytes
could be used more frequently. The “usefulness” of fragments could be based
upon the weights assigned to lymphocytes that use them.

Other ideas include allowing mutations of lymphocytes, managing param-
eter settings adaptively (for example, using a genetic algorithm), varying the
confidence values for training during application.

References

1. Oda, T., White, T.: Developing an immunity to spam. In: Genetic and Evolutionary
Computation Conference (GECCO 2003), Proceedings, Part I. Volume 2723 of
Lecture Notes in Computer Science., Chicago (2003) 231–242

2. Oda, T., White, T.: Increasing the accuracy of a spam-detecting artificial immune
system. In: Proceedings of the Congress on Evolutionary Computation. Volume 1.,
Canberra, Australia (2003) 390–396

3. Templeton, B.: Reflections on the 25th anniversary of spam. (2003)
4. Postini Inc.: Postini - email stats (2005) accessed April 2005.
5. MessageLabs Ltd.: Monthly report: February 2005. Intelligence Newsletter (2005)
6. : Controlling the assault of non-solicited pornography and marketing (CAN-SPAM)

act of 2003 (2003) S. 877 as it was passed by the US Senate.
7. Asaravala, A.: With this law, you can spam. Wired News (2004)
8. Secker, A., Freitas, A., Timmis, J.: AISEC: An Artificial Immune System for E-

mail Classification. In: Proceedings of the Congress on Evolutionary Computation,
Canberra. Australia, IEEE (2003) 131–139

9. Sullivan, T.: The myth of spam volatility. QAQD.com White Paper (2004) Pre-
sented at the 2004 MIT Spam Conference.

10. Apache Software Foundation: Spamassassin (2005) http://spamassassin.org.
11. Pantel, P., Lin, D.: Spamcop: A spam classification & organization program. In:

Learning for Text Categorization: Papers from the 1998 Workshop, Madison, Wis-
consin, AAAI Technical Report WS-98-05 (1998)

12. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to
filtering junk E-mail. In: Learning for Text Categorization: Papers from the 1998
Workshop, Madison, Wisconsin, AAAI Technical Report WS-98-05 (1998)

13. Graham, P.: A plan for spam. Hackers & Painters (2002)
14. : SpamBayes: Bayesian anti-spam classifier written in python (2004) Accessed

October 13, 2004. http://spambayes.sourceforge.net/.
15. Graham, P.: Better bayesian filtering. In: 2003 Spam Conference. (2003)
16. : SpamAssassin public corpus (2003) http://spamassassin.org/publiccorpus/.
17. Anderson, R.: Filters take a bite out of spam. Network Computing (2004)
18. Metz, C.: Spam blockers. PC Magazine (2004)
19. Free Software Foundation: Mailman (2005) http://www.list.org.


