
SOMA:
Mutual Approval for Included 

Content On Web Pages

Terri Oda, Glenn Wurster, 
P. C. van Oorschot, Anil Somayaji



 
2

SOMA

http://flickr.com/photos/kenturamon/168978666/

 Same Origin Mutual Approval

 Tighten the JavaScript Same 
Origin policy to prevent 
additional attacks

 Extension to web browsers
– Obey simple policies set by 

site operators



 
3

Same Origin Policy

 All JavaScript code has full access to:
– Run/Overwrite all other JavaScript code
– Read/Write to other content from the document origin

 Same Origin Policy restricts access to content from 
other domains



 
4

Same Origin Policy

Content Permissions
Type Fetch Read Modify Execute Display

Images YES SO SO NO YES
HTML YES SO SO NO YES
JavaScript YES SO YES YES NO
Audio/Video YES Plugin Dependant NO YES

 Same Origin policy restricts read and modify access
 Fetching of content is unrestricted



 
5

Sample Web Attack



 
6

Inclusions

Inclusions allowed with Same Origin Inclusions allowed with SOMA



 
7

SOMA Manifests

Server Response Meaning Symbol
No Manifest All sites approved
B in Manifest Content from B allowed
B not in Manifest Content from B not allowed

A A B
A A B
A C B

Possible Manifest States
(given by site A)

1.A file on the origin domain (/soma-manifest)

2.Lists domains approved by origin site

For some domain B



 
8

SOMA Approvals

Possible Approval Responses
(by site B)

Server Response Meaning Symbol
File Not Found All sites approved
YES Can include content into A's page
NO Can NOT include content into A's page

B B A
B B A
B D A

1.Script on content provider site (/soma-approval)

2.Responds to approval requests
– Based on origin page domain

For some domain A



 
9

SOMA Message Flow

Originating
Web Server A

Web Browser
Remote

Web Server B

Request Page

Request Manifest

Return Manifest

Return Page

Request Approval

Approval Response (YES/NO)

Request Content

Return Content

If A wants to include
content from B (and
B is in A's manifest)

If B returns YES



 
10

Cross Site Scripting

 Any script can include other scripts (from any site)
 Inclusion blocked by SOMA Manifest



 
11

Unrestricted Outbound Communication

 Any script can read content from the document origin
 Transmission blocked by SOMA Manifest



 
12

Cross Site Request Forgery

 A script can make requests to any domain
 Request blocked by SOMA Approval



 
13

Bandwidth Stealing

 A document can include content from anywhere
 Inclusion blocked by SOMA Approval



 
14

SOMA Prototype

 Mozilla Firefox 2 Add-on
– also compatible with Firefox 3
– can be downloaded and tried out

– http://ccsl.carleton.ca/software/soma

 Fully backwards compatible
– current websites appear unchanged

 Stops attacks discussed earlier
 Icon in statusbar indicates that SOMA is running

http://ccsl.carleton.ca/software/soma


 
15

Screenshot of Prototype



 
16

Deployment

 Need:
– minor modifications to browser

– Mozilla SOMA Add-on implementation code is 12k

– policy on origin & content providers (ideally)
– some protection if either side provides policy

 Requires some additional network overhead
– fetch manifest from origin
– fetch approval from each content provider before 

fetching content

 Deployment is incremental



 
17

Performance

 Approvals overhead:
– adds one additional round trip
– estimated additional page load time is 5.58% 
– estimate probably overstated:

– We used average content response size: 10459 bytes
– soma-approval response size: 4 bytes (0.1% overhead)

• independent of site complexity

 Manifest size:
– checked front page of top 500 Alexa sites
– average: 5.45 domains per site (5.3 stdev)



 
18

Complementary Work: 
Existing Code Injection Prevention

 Do careful input checking
– risk of interactions with web page
– difficult to do well
– done by web programmer in source code

 Detect known code injection attacks
– XSS, CSRF, SQL Injection
– risk of false positives/missing new attacks
– can be done by 3rd party tool

• eg: web application firewalls



 
19

Complementary Work:
Mashups

 A mashup is a web application 
which combines information and 
code from different sources

 There has been work on ways to 
make them more secure
– better separation between components
– communication between different contexts

 Mashup work focuses on interactions within the page
– SOMA focuses on interactions with external servers

 Requires use of tools by skilled web developers



 
20

Related Work:
Tahoma and Flash

 Tahoma [Cox 2006]
– SOMA Manifest for VM's

 Flash's crossdomain.xml
– SOMA approvals for Flash



 
21

Related Work:
Mozilla's Content Security Policy

 First version (“Site Security Policy”) similar to SOMA
 Most recent version has only manifest

– Does not protect against cross site request forgery

 Other major differences:
– policy is per-resource
– more complex syntax required



 
22

SOMA Benefits

1. Incrementally deployable (with incremental benefit)

2. No configuration/usage burden on end users

3. Required changes/configuration are done by site 
operators 

4. Changes are relatively simple to 
understand and easy to implement

5. Gives server operators the ability 
to specify which sites can interact 
with their content



 
23

Thanks!

 Carleton Computer Security Laboratory:
– http://ccsl.carleton.ca

 SOMA Firefox Add-On (and more info):
– http://ccsl.carleton.ca/software/soma

http://ccsl.carleton.ca/
http://ccsl.carleton.ca/software/soma

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

